SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline
نویسندگان
چکیده
BACKGROUND Barely 10-20% of patients with metastatic colorectal cancer (mCRC) receive a clinical benefit from the use of anti-EGFR monoclonal antibodies (mAbs). We hypothesized that this could depends on their efficiency to reduce Store Operated Calcium Entry (SOCE) that are known to enhance cancer cells. RESULTS In the present study, we demonstrate that SOCE promotes migration of colon cancer cell following the formation of a lipid raft ion channel complex composed of TRPC1/Orai1 and SK3 channels. Formation of this complex is stimulated by the phosphorylation of the reticular protein STIM1 by EGF and activation of the Akt pathway. Our data show that, in a positive feedback loop SOCE activates both Akt pathway and SK3 channel activity which lead to SOCE amplification. This amplification occurs through the activation of Rac1/Calpain mediated by Akt. We also show that Anti-EGFR mAbs can modulate SOCE and cancer cell migration through the Akt pathway. Interestingly, the alkyl-lipid Ohmline, which we previously showed to be an inhibitor of SK3 channel, can dissociated the lipid raft ion channel complex through decreased phosphorylation of Akt and modulation of mAbs action. CONCLUSIONS This study demonstrates that the inhibition of the SOCE-dependent colon cancer cell migration trough SK3/TRPC1/Orai1 channel complex by the alkyl-lipid Ohmline may be a novel strategy to modulate Anti-EGFR mAb action in mCRC.
منابع مشابه
Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases.
The SK3 channel, a potassium channel, was recently shown to control cancer cell migration, a critical step in metastasis outgrowth. Here, we report that expression of the SK3 channel was markedly associated with bone metastasis. The SK3 channel was shown to control constitutive Ca(2+) entry and cancer cell migration through an interaction with the Ca(2+) channel Orai1. We found that the SK3 cha...
متن کاملUrotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation.
AIMS Urotensin-II (UII) is a vasoactive peptide that promotes vascular smooth muscle cells (VSMCs) proliferation and is involved in the pathogenesis of atherosclerosis, restenosis, and vascular remodelling. This study aimed to determine the role of calcium (Ca(2+))-dependent signalling and alternative signalling pathways in UII-evoked VSMCs proliferation focusing on store-operated Ca(2+) entry ...
متن کاملLocal Ca2+ Entry Via Orai1 Regulates Plasma Membrane Recruitment of TRPC1 and Controls Cytosolic Ca2+ Signals Required for Specific Cell Functions
Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²...
متن کاملRoles of store-operated Ca channels in regulating cell cycling and migration of human cardiac c-kit progenitor cells
Che H, Li G, Sun HY, Xiao GS, Wang Y, Li GR. Roles of store-operated Ca channels in regulating cell cycling and migration of human cardiac c-kit progenitor cells. Am J Physiol Heart Circ Physiol 309: H1772–H1781, 2015. First published October 9, 2015; doi:10.1152/ajpheart.00260.2015.—Cardiac c-kit progenitor cells are important for maintaining cardiac homeostasis and can potentially contribute ...
متن کاملRoles of store-operated Ca2+ channels in regulating cell cycling and migration of human cardiac c-kit+ progenitor cells.
Cardiac c-kit(+) progenitor cells are important for maintaining cardiac homeostasis and can potentially contribute to myocardial repair. However, cellular physiology of human cardiac c-kit(+) progenitor cells is not well understood. The present study investigates the functional store-operated Ca(2+) entry (SOCE) channels and the potential role in regulating cell cycling and migration using conf...
متن کامل